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Deterministic ratchets: Route to diffusive transport
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The rectification efficiency of an underdamped ratchet operated in theadiabaticregime increases according
to a scaling current-amplitude curve as the damping constant approaches a critical threshold; below threshold
the rectified signal becomes extremely irregular and eventually its time average drops to zero. Periodic~locked!
and diffusive~fully chaotic! trajectories coexist on fine tuning the amplitude of the input signal. The transition
from regular to chaotic transport in noiseless ratchets has been studied numerically.
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I. INTRODUCTION

Particles in an asymmetric potential can drift on avera
in one direction even when the time and space average o
applied macroscopic forces or gradients is zero. To ach
directed transport in such a device, called a ratchet, a ti
correlated source of energy is required, for instance n
markovian external fluctuations~thermal ratchets@1#! or a
time periodic drive~rocked ratchets@2#!. In signal analysis
notation, a ratchet can be regarded as a~random or periodic!
signal rectifier. Rocked ratchets with massive particles
hibit strong inertial effects capable of reversing their curr
@3#. Moreover, inertial rocked ratchets are naturally subj
to developing chaotic dynamics, the onset of which becom
detectable as thermal fluctuations are switched off@4,5#.

This class of devices, operated at zero noise level, ma
assimilated to an asymmetric version of the damped-dri
pendulum, a chaotic system investigated at depth in 19
@6–8#. The dynamics of a massive particle in a cosine pot
tial was reproduced in terms of a ‘‘climbing-sine map’’@7#:
Running orbits, relevant to the rectification mechanism i
ratchet, can be either periodic or diffusive, depending on
value of the map control parameter~viz. the amplitude of the
sine term!. The phase-space portrait of the actual damp
driven pendulum was computed by Hubermanet al. @6#, who
revealed the existence ofdelocalizedstrange attractors with
an intricate structure on all scale, later recognized to be f
tal objects@8#.

In this paper we investigate the transport of unit ma
particles in a ratchet potential subjected to a sinusoidal d
ing forceA(t) with angular frequencyV much smaller than
the damping constantg and the librational frequencyv0 of a
particle trapped at the bottom of a potential well. The dam
ing constant is lowered from exceedingly large valuesg
.10v0, where the Smoluchowski approximation of Ref.@1#
holds good, deep into the underdamped regimeg;0.01v0.
The adiabatic conditionV,v0 ,g imposed here, has no
been addressed in the damped-driven pendulum litera
but is believed to maximize transport in biological syste
@1# and Josephson junction arrays@6,9,10#, among others. On
decreasingg we noticed the following.
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~a! The rectification efficiency of an inertial ratchet in
creases inversely proportional tog according to a scaling
current-amplitudêv&-A0 curve.

~b! Below a criticalg value, morê v&-A0 curves coexist,
thus signaling the appearance of regular trajectories w
higher periodicity.

~c! On further decreasingg, all trajectories develop a fi-
nite diffusioncoefficient and the ratchet current drops mon
tonically toward zero.

These results are ofimmediateapplication to the design
and operation of nanoarray devices, both in solid state@9,10#
and in bioengineering@1#.

II. THE DOUBLE-SINE MODEL

We have integrated numerically the archetypal ratc
model @2#

ẍ52g ẋ2V8~x!1A0 sin~Vt ! ~1!

with asymmetric double-sine potential~Fig. 1!

V~x!52
1

k Fsin~kx!1
1

4
sin~2kx!G ~2!

and the arbitrary time origin of the driveA(t)5A0 sin(Vt).
The constantk was set equal top/2, so that the unit cell of

FIG. 1. The double-sine potential~2! with k5p/2 ~dimension-
less units!. As the lhs of each potential well is steeper than the r
the natural ratchet direction is positive.
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Eq. ~2! is l 54 and the libration frequency at the bottom

its wells is v05Ak(3A3/2)1/2.1.591. The rectification
window (A1 ,A2) of the ratchet~1! and~2! is determined by
the depinning thresholds of the tilted potentialsV(x)
7xuA0u, i.e.,A153/4 to the right (2) andA253/2 to the left
~1!. As A1,A2, the ratchet current isnaturally directed to
the right @2# or, equivalently, the time averagêv& of the
particle velocity is positive definite forA0.A1. The forcing
frequencyV is taken so small that the theV dependence o
A1 ,A2 is negligible@4#.

In the adiabatic limit,V!v0 ,g, the values of̂ v& are
quantized with stepDv5 l /TV , corresponding to a net pa
ticle shift of one unit celll per forcing periodTV52p/V. Of
course, quantization of thêv&-A0 characteristics become
less and less apparent as the ratchet operating condi
most relevant to the present investigation, i.e.,V!g!v0,
are approached~see Fig. 2!. The integration of Eq.~1! was
performed by means of a fourth order Runge-Kutta al
rithm with integration stepDt5231026TV .

In our numerical work we setV50.01 and explored the
ratchet response on varying the damping constant in the
terval @1022,10#. For largeg values (g510 in Fig. 2! we
reproduced the results of Ref.@2#. The current-amplitude
curve grows linearly withA0 from zero up to a maximum
(A22A1)2/2, betweenA1 and A2, and then decays with a
comblike structure reminiscent of the Vernier effect.~The
amplitude of the particle excursions both to the left and
the right increases fast withA0, but slightly faster to the left
than to the right.! Note that the rectification effect persists f
values ofA0 much larger thanA2.

A. The mobility curves

For g values in the range@0.07,0.5#, the ^v&-A0 charac-
teristics exhibits the universal behavior displayed in Fig.

FIG. 2. g^v&-A0 characteristics of ratchet~1! and ~2! for V
50.01 and different values ofg ~dimensionless units, incrementa
stepsDA051023). The dashed curve represents the adiabatic li
V51024 and g510. Inset: the numerical data forg50.1 ~solid
curve! are compared withm(A0 ,A1) for A1,A0,A2, Eq. ~3!, and
m(A0 ,A1)2m(A0 ,A2) for A0.A2 ~dashed curve!. The velocity av-
erages have been taken over 300 forcing cycles, after discardin
first 103 cycles to get rid of transient effects.
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The data points ofg^v& vs A0 rest on a unique limiting curve
(g50.1 in Fig. 2! with deviations of a few percent~and
diminishing with loweringg). The scaling laŵ v&}1/g for
an adiabatically driven underdamped particle is to be
pected@11,12#. More remarkably, we observed the following

~i! The ratchet current gets more and more narrowly
stricted to the rectification window (A1 ,A2) as the damping
constant grows smaller thanv0. This effect is even more
apparent in Fig. 3 forg50.05.

~ii ! The onset of the ratchet current at the thresholdA1 is
abrupt;g^v& jumps from zero up to 0.086 within one incre
mental stepDA05231026. On the contrary, the sharply de
caying branch of the curveg^v& for A0.A2 is continuous,
its persistent irregularity being a signature of the underly
chaotic dynamics of the system~see caption of Fig. 3!; peaks
and dips have been resolved on the scaleDA051025, i.e.,
within the thickness of the broken line connecting our d
points.

The universalg^v&-A0 curve can be determined as fo
lows. For A1,A0,A2 the particle runs to the right with
velocity v(t)5A0 sin(Vt1f)/g, where the adiabatic phas
lag isf52arctan(V/g). As discussed in Ref.@11#, a trapped
particle gets depinned to the right whenA(t).A1 and, then,
repinned as soon asA(t)<Ar , with Ar}A1(g/v0).0. An
underdamped particle will be then traveling in the positi
direction during the time interval@V21 arcsin(A1 /A0),p/V#
mod(2p/V); hence, the time average ofv(t) over one forc-
ing period yields

g^v&
A0

[m~A0 ,A1!5
1

2p
@A12~A1 /A0!211#. ~3!

The right hand side~rhs! of Eq. ~3! is g independent and
accurate in the limitg/v0→0. For A0.A2 a similar argu-
ment leads tog^v&/A05m(A0 ,A1)2m(A0 ,A2) ~see Fig. 2,

it

the

FIG. 3. g^v&-A0 characteristics~dimensionless units! of ratchet
~1! and ~2! for V50.01, g50.05, andDA051023 ~circles!. Inset:
details withDA051024. The curveg50.1 from Fig. 2 is plotted
for the reader’s convenience~solid curve!. Averages have been
taken as in Fig. 2, but for the squares on curveg50.1, where the
preparation time was doubled (23103 cycles!. Dashed curves,
characteristics1:1-1:4.
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inset!. The analogy with the experimentalI -V characteristics
of the Josephson ratchet in Ref.@10# is apparent.

A totally different scenario emerges on decreasingg be-
low 0.07. The current forA0.A2 drops close to zero, while
in the rectification window the data points taken at steps
DA051023 arrange themselves along different curre
amplitude characteristics. In particular, the following situ
tions are seen.

~iii ! In Fig. 3, besides the universal curve~3! denoted by
1:1, at least three more characteristics,1:2-1:4, are re-
solved. In our notation curve 1:m corresponds to curve~3!
divided by the integerm. Note that, contrary to the case o
the damped-driven pendulum@6,7#, in the asymmetric prob-
lems ~1! and ~2! odd m values are not ruled out.

~iv! A g^v&-A0 background is enclosed by curve1:4. ~or,
possibly, by1:5, notshown!. The data point distributions on
the characteristics1:1-1:4 aredenser in the vicinity ofA1,
while the background gets thicker close toA2. ~Sparse nega
tive mobility background values have been recorded imm
diately above the thresholdA1.! In the window (A1 ,A2)
compactA0 intervals corresponding to the diverse charact
istics ~or to the background! can be easily indentified on th
scaleDA051025 ~see Fig. 3, inset!. On further decreasingg
below 0.04, the curves1:1-1:4 getdepleted and only an
extremely irregular, low background survives.

In order to explain the coexistence of many^v&-A0 char-
acteristics, we sampled one trajectory from each of the
permost three 1:m curves~Fig. 4, top panel, upper!. These
trajectories are seemingly periodic and independent of
initial conditions. The trajectory corresponding to curve 1
drifts with positive speed stepwise, by alternating one p
teau~trapped particle! with one jump of constant lengthDxp
~running particle!. The trajectory representative of curve 1
consists of a regular sequence where each plateau is follo

FIG. 4. Top panels, samples of regular and diffusive trajecto
~the latter ones for different initial conditions, see text! for V
50.01 and g50.05; bottom panel,C(t)5x2(t)2x(t)2 for A0

50.9305; here,( . . . ) are taken over 102 different preparations
~dimensionless units!. Dashed line, fitting law~5! with D5380.
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by a full oscillation~here, with measured peak-to-peak am
plitudeL.3800). Note that the separationDxp between two
adjacent plateaus is almost the same as in the first case, b
the A0 difference as small as 1024. Consequently, the aver
age velocity of a type 1:2 trajectory is half the referen
value ~3! on curve1:1. Analogously, a type 1:3 trajectory
alternates periodically one plateau each two oscillations, t
drifting with one-third of the velocity~3!.

B. The diffusion coefficient

The behavior of the background trajectories is even m
interesting.

~v! Plateaus are separated byrandom sequences of full
oscillations, extremely sensitive to the initial conditions~Fig.
4, top panel, lower!; the lengthst of such sequences ar
distributed according to a simpleexponentiallydecaying law.
Occasionally, the oscillation sequences slant to the left,
in the negative direction, with glitches of different length. A
suggested in Refs.@6,4#, we determined the second cumula
of the randomtrajectories plotted in Fig. 4,

C~ t !5x2~ t !2x~ t !2, ~4!

the averages( . . . ) being taken over the particle initial con
ditions x(0),ẋ(0) @4#. From the fitting law

lim
t→`

C~ t !52Dt ~5!

one eventually extracts the diffusion coefficientD of the
noiseless processx(t) ~Fig. 4, bottom panel!.

~vi! Trajectories change from regular to chaotic on tuni
g at constantA0. Typically, for values ofA0 corresponding
to points sitting on curves1:2-1:3 inFig. 3, the periodicity
of thex(t) trajectories varies asg is ramped from 0.07 down
to 0.04; trajectories with different periodicity show up r
peatedly, interspersed with diffusive trajectories; eventua
the diffusive nature of the underdamped processes prev
Reentrant type 1:1 trajectories do not imply the current
versals observed in Ref.@5#. For V50.01, type 1:m trajec-
tories withm>4 are hardly detectable; moreover, these d
ferent behaviors turned out to be insensitive to the ini
conditions.

The onset of diffusive transport is a main feature of in
tial ratchets@4#. Although an analytical estimate of the diffu
sion coefficientD lies beyond the grasp of our theoretic
tools, a simple relationship between drift and diffusion o
ratchet~1! and ~2! in the fully chaotic regime can be easil
established. Consider the caseA050.9305 represented in
Figs. 3 and 4. The average value ofg^v& is 0.045, namely,
one-fifth of the corresponding value on curve1:1; thus, the
average duration of the oscillation sequences along the
evant diffusive trajectories is of the ordert̄5nTV with n
54. The separationDxp between two subsequent platea
~no matter whatn, as long as one disregards the negat
slant of the oscillation sequences! can be evaluated by inte
grating v(t)5A0 sin(Vt1f)/g along the running solution
branch, i.e., over the time interval@V21arcsin(A1 /A0),p/V#;

s

0-3



s-
,
ry

v
ic
ex
-
nd

de
or
tr

e

tive

at,
in-

-
ne-

t
e

y,
l

a
te

ory

ted
tory
ds

al

-
tions
eri-

r-
a-
u-
e

a-

the
n
ant

ace
ths

er

i-

se
er

M. BORROMEO, G. COSTANTINI, AND F. MARCHESONI PHYSICAL REVIEW E65 041110
for the parameter values of Fig. 4,Dxp.(3/4)L. As a con-
sequence, the standard formula@13#

D5~Dxp!2
t22t2

2t3
~6!

yields the estimateD5(3L/4)2/12t̄.270 that compares
fairly closely with the fitted valueD5380650 ~in the units
of Fig. 4!.

III. PHASE-SPACE PORTRAITS

The chaotic nature of the trajectories in Fig. 4 is illu
trated by the reduced phase-space portrait of Fig. 5; heregv
and x̄[x mod(l )2(1/2) have been recorded once eve
forcing cycle at tn5(n11/4)TV ~stroboscopic snapshots!.
The periodicity of type1:1-1:3 trajectories is apparent: In
all three cases there exists one single point at a lowest
locity v0, associated to the depinning of the ratcheted part
out of the potential trap. Type 1:2 and 1:3 trajectories
hibit one or twofull oscillations, respectively, prior to repin
ning ~Fig. 4!; therefore, the snapshot velocities correspo
ing to such oscillations are larger than the relevantv0. In
view of a straightforward energetic argument, one conclu
that the portrait points representative of regular traject
oscillations must be located along the upper asymme
band of Fig. 5,v1( x̄), defined by

v i~ x̄!2v i52V~ x̄2x0!/v i , ~7!

FIG. 5. Reduced phase-space portrait forA050.9309 ~1!,
0.9308 ~2!, 0.9307 ~3!, and 0.9305~dots!. Dashed straight lines

connect the portrait point sets of~2! and ~3!. Open circles:v1( x̄)

~upper! andv2( x̄) ~lower!, Eq. ~7!, with x0520.11. Note that the
dots in the diffusive regime are concentrated at the confined
ment ‘‘a’’ and on the two upper bands. The remaining paramet
are as in Fig. 4~dimensionless units!.
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where i 51,2 is a band index,v i its mean value,V(x) the
ratchet potential~2!, andx0 a spatial shift that depends on th
definition of x̄ and on the velocity phase lagf.

Most remarkably, the phase-space portrait representa
of regular trajectories consists of singular points~more
likely, confined segments!, denoted by 1–3 in Fig. 5; this
implies that such trajectories are truly periodic and th
equivalently, for appropriate parameter values inertial dep
ning amounts to arenewalprocess@13# of variable locking
time. The velocity gapv12v0 in our stroboscopic rappresen
tation can be easily estimated. Let us assume that, on
glecting a small phase lagf, the particle velocity is zero a
t50 ~no tilt! and relaxes towards its asymptotic valu
A(t1)/g5A0 /g according to an exponential law, namel
v05(A0 /g)@12e2g(t12t0)#, if the particle exits a potentia
well assisted by the tiltA(t) at t05V21 arcsin(A1 /A0), or
v15(A0 /g)@12e2gt1#, if, thanks to inertia, it executes
full oscillation without getting trapped. The ensuing estima
g(v12v0).3.831022 agrees fairly well with our data in
Fig. 5.

The reduced phase-space portrait of a diffusive traject
is characterized by a confined segment~‘‘ a’’ in Fig. 5!, as-
sociated with the depinning events, and a complica
gapped band structure, accounting for the negative trajec
slant. The splitting of the upper edge into two close ban
v i( x̄) with i 51,2 is related to the existence of two flexur
points on the shallow, rising branches ofV(x). The disper-
sion of the representative points along the bandsv i( x̄) and
the bottom ribbons@same shape asv i( x̄), but apparently
quantized along thegv axis# is a clear-cut signature of afully
chaoticbehavior.

IV. CONCLUSIONS

In this paper we focused on certain properties ofadiabatic
inertial ratchets, which are of direct application to bio
engineered and nanoelectronic devices. Related ques
that might deserve closer attention by theorists and exp
menters, alike, are as follows.

(a) The robustness (or selectivity) of curves 1:m in the
presence of noise. In particular, one wonders if all characte
istics 1:m may survive in the presence of thermal fluctu
tions. Most likely, with increasing the temperature, the diff
sive nature of the ratchet trajectories will prevail in th
vicinity on A2, first, and eventually over the entire rectific
tion window.

(b) The dependence of the diffusion coefficient on
ratchet parameters. In the absence of noise, the diffusio
coefficient depends crucially on the nature of the relev
trajectories. Trajectories may be periodic (D50), fully cha-
otic @when the argument of Eq.~6! applies# or exhibit an
intermediate behavior, termedconfined chaos. For trajecto-
ries in this category all singular points in the phase-sp
portraits of Fig. 5 are replaced by curves of different leng
and the diffusion coefficient acquires a finite value.

(c) The generalization of the present analysis to wid
classes of asymmetric potentials [12,14]. While the mobility
curves may depend on the choice ofV(x), the dynamical
regime V!g!v0 is expected to show important similar
ties, no matter what the details of the substrate model.
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